
 
Mathematical Logic 

 

Propositional and Predicate Logic: 

A proposition is a statement that can either be true (denoted T) or false (denoted F).  

• Propositions can be combined using logical operators not (¬), or (∨), and (∧), implies 

(→), and if and only if (↔), to create new propositions.  

• Two formulas/propositions P and Q are logically equivalent (denoted P ≡ Q) if they 

have the same meaning. That is, P and Q evaluate to the same value in all rows of a 

truth table, or the formula P ↔ Q evaluates to T in all rows of a truth table.  

• The contrapositive of an implication P → Q is the formula (¬Q) → (¬P). The 

contrapositive (¬Q) → (¬P) is logically equivalent to P → Q. The converse of an 

implication P → Q is the formula Q → P.  

• Predicates can either be universally quantified (∀x P(x)) or existentially quantified (∃x 

P(x)) to create propositions from predicates. Formulas can have multiple quantifiers 

and the order in which they appear can influence their meaning.  

• A domain of discourse identifies the set over which predicate variables take values 

and the meaning of predicates. It plays an important role in determining the truth of 

propositions. 

Definition 1 (Propositions).  A proposition is a statement that can either be true or 

false. We will denote true as T and false as F. Let us look at some examples and non-

examples of propositions. 

Example : The following statements are all propositions because they are either true 

or false: “5 is prime”; “Champaign is the capital of Illinois”. On the other hand, 

questions like “When is this going to end?” or commands like “Read these notes!” are 

not propositions. 

 

Logical Operators: 
 

Propositions can be combined using logical operators to create more complex 
propositions. 

The negation of a proposition P is written ¬P and read “not P”. 

Figure 1 shows that truth table for ¬P, which shows that ¬P takes the value T 

when P is F, and takes the value F when P is T. The disjunction of propositions P 

and Q. 

 



 

 

is written P ∨ Q and read “P or Q”. The meaning of P ∨ Q is given by truth table shown in 

Figure 2 — P ∨ Q evaluates to F if both P and Q are both F, and it evaluates to T in all 

other cases. It is worth noting that P ∨ Q evaluates to T when both P and Q are T. Thus it 
corresponds to an “inclusive or”. Another important logical operator is conjunction, written 

as P ∧ Q and read “P and Q”. The truth table for P ∧ Q (Figure 3) shows that this is T 

only in the case when both P and Q are T. In all other cases, P ∧ Q is F. 

The next important logical operator is implication, which is writ- ten as P → Q and read 
as “P implies Q”. P is the antecedent of the implication, and Q is the consequent. The 
truth table for P → Q is shown in Figure 4. 

 

 

Definition 3 (Contrapositive and Converse). The contrapositive of an implication P → Q is the 
formula (¬Q) → (¬P). The converse of an implication P → Q is the formula Q → P. 

 

 

 

Logical Equivalence: Logical propositions that look different may have the 



same meaning. This leads to the notion of logical equivalence. 

 

Definition 4 (Logical Equivalence). Two formulas or propositions P and Q are said to 
be logically equivalent (denoted P ≡ Q) if they have the same meaning. 

 

 
 

Commonly used Equivalences: 

Equivalences between formulas are quite often 

used in sim- plifying mathematical statements, 

and in writing proofs. We list some commonly 

used equivalences. Constructing truth tables to 

demonstrate these equivalences, is left for the 

reader as an exercise. In each of the 

equivalences below P, Q, R are any propositions. 

1. Double Negation: ¬¬P ≡ P 

2. The following two equivalences hold 

P ∨ (¬P) ≡ T P ∧ (¬P) ≡ F 

3. Identity: The following hold. 

P ∨ F ≡ P P ∧ T ≡ P 

4. Commutativity: The logical operators ∨ and ∧ 
are commu- tative. That is, 

P ∨ Q ≡ Q ∨ P P ∧ Q ≡ Q ∧ P 

5. Idempotence: The logical operators ∧ and ∨ are 
idempotent. That is, 

P ∨ P ≡ P P ∧ P ≡ P 

6. Associativity: The logical operators ∨ and ∧ 
are associative. That is, 

 



P ∨ (Q ∨ R) ≡ (P ∨ Q) ∨ R P ∧ (Q ∧ R) ≡ (P ∧ Q) ∧ R 

7. Distributivity: The logical operators ∨ and ∧ distribute 

over each other. 

P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R) 

P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R) 

8. de Morgan’s Laws: These are two of the most important 

equivalences that relate negation, conjunction, and disjunc- tion. 

¬(P ∨ Q) ≡ (¬P) ∧ (¬Q) 

¬(P ∧ Q) ≡ (¬P) ∨ (¬Q) 

Combining this with the law of double negation, de Mor- gan’s Laws can be 

seen as a way to define conjunction in terms of disjunction and negation (or 

disjunction using conjunction and negation). Thus, we could say, 

P ∨ Q ≡ ¬((¬P) ∧ (¬Q)) 

P ∧ Q ≡ ¬((¬P) ∨ (¬Q)) 

9. Implication: Implication can be defined in terms of disjunction and 

negation. That is, P → Q ≡ (¬P) ∨ Q. Thus, using de Morgan’s 

laws and the law of double negation, we could say ¬(P → Q) ≡ P 

∧ (¬Q).  

10. Contrapositive: The contrapositive of an implication is equivalent to the implication.  

That is P → Q ≡ (¬Q) → (¬P). 

  

  



Predicate Logic 
Predicate Logic : 
Predicates are properties, additional information to better express the subject of the 
sentence. A quantified predicate is a proposition , that is, when you assign values to 
a predicate with variables it can be made a proposition. 
For example : 

In P(x) : x>5, x is the subject or the variable and ‘>5’ is the predicate. 

P(7) : 7>5 is a proposition where we are assigning values to the variable x, and it has 

a truth value, i.e. True. 

The set of values that the variables of the predicate can assume is called the 

Universe or Domain of Discourse or Domain of Predicate. 

A predicate is a proposition that depends on the value of some variables. For 
example, the statement “x is prime” will either be true or false depending on the value 
of x. Taking the standard 
interpretation for a prime number, when x = 2, the statement “x is prime” is true; and 
when x = 4 the statement “x is prime” is not true. Predicates may depend on more than 
one variable. For example, the 
predicate Q(x, y) D= x + y = 0 depends on the values of both x and y. 
 

Universal Quantification. It is written like an upside down A. For a predicate P, 

the proposition ∀x P(x), is read as “for all x, P(x)”. This proposition is true, if the 

predicate P is true not matter what value is substituted for x. Based on this 

interpretation, one can observe a close correspondence between universal 

quantification and conjunction. A proposition ∀x ∈ N P(x) is equivalent to saying 

that P(0) is true, and P(1) is true, and P(2) is true, and so on. 

Existential Quantification. The second form of quantification is existen- tial 

quantification which is written like a backwards E — ∃x P(x) — and read “exists x 

P(x)”. The proposition ∃x P(x) is true if there is some value we can assign to x 
such that th predicate P is true. 

Thus, ∃x ∈ N P(x) is effectively saying that either P(0) is true or P(1) is true or 

P(2) is true and so on. 

The correspondence between universal quantification and conjunc- tion, and 

existential quantification and disjunction, allows one to infer logical equivalences 

like de Morgan’s laws for quantification. 

¬(∀x P(x)) ≡ ∃x (¬P(x)) 

¬(∃x P(x)) ≡ ∀x (¬P(x)) 

 

Domains of Discourse: Recall that a formula ∀x P(x) says that the predicate P is 
true no matter what value is substituted for x. But where are the values drawn 
from? This given by the domain of dis- course, which identifies the set over which 
predicate variables take 



values and the meaning of predicates. It is given explicitly in a state- ment like ∀x ∈ 

Z(∃y ∈ Z (x + y = 0)). Here variables x and y take values over the integers (Z). It also 

tells us that + should be inter- preted the way addition is usually defined over the 

integers. 

 

Order of Quantifiers: It is important to pay attention to the order of quantifiers. 

Changing the order can completely change the meaning. For example, the formula 

∀x ∈ Z(∃y ∈ Z (x + y = 0)) 

is true, because we can take y to be −x. On the other hand, 

∃y ∈ Z(∀x ∈ Z (x + y = 0)) 

not true — there is no number with the property that no matter what we add to it, we 

get 0! 

 

 

  



propositional equivalence: 

Two compound propositions p and q are logically equivalent if p ↔ q is a 
tautology. The symbol we use to show that there is a logical equivalence is ‘≡’. 
As an example, p ≡ q means that p is logically equivalent to q. 

 

Definitions 

Def. A compound proposition is an expression created using propositional variables and 
logical operators. Examples, p v q, p ^ q v r. 

Def. A tautology is a compound proposition that is always true, with disregard of the 
truth values of the propositional variables in the compound proposition. 

Def. A contradiction is a compound proposition that is always false, with disregard of the 
truth values of the propositional variables in the compound proposition. 

Def. A contingency is a compound proposition that is not a tautology, nor a 
contradiction. 

Def. Two compound propositions p and q are logically equivalent if p ↔ q is a tautology. 

We start with definitions because in mathematics you can’t do anything without using 
definitions. 

So, it is very important that you understand the definitions so you can use them to 
create arguments and proofs. 

Example 1: Shows the following by using a a truth table 

Propositional equivalences: Example 1 

If we follow the definition above that tells us if two compound propositions are logically 
equivalent, we can see that by creating a truth table we can answer whether the two 
compound propositions are logically equivalent or not. 

I wrote another post for you in case you still don’t know how to create a truth table. 
See below the table. 

https://computinglearner.com/truth-tables-example/


 

Propositional equivalences: Example 1 solution 

As you can see, the compound proposition in the last column is a tautology because it is 
always true. Then, by the definition of logical equivalence, we can state that: 

 

 

There are some important logical equivalences that you can use. They are already 
proved and therefore are accepted in any mathematical argument. 



 

Logical equivalences laws 



 

Logical equivalences for conditionals 



 

Logical equivalences for biconditionals 

Every time you use one of these logical equivalences, you have to justify it just by 
mentioning the name. In the last two cases, you justify by saying “by conditional logical 
equivalence”. 

 

  



 

1. Tautology : A propositional function which is true in every possible case. 
Final column all true. 

P ~P P V ~P 

F T T 

T F T 

  

2. Contradiction: A propositional function which is false in every possible 
case. 

P ~P P V ~P 

T F F 

F T F 

  

3. Contingency: A propositional function which is sometimes true and 
sometimes false. 

P Q ~P V Q 

F F T 

F T T 

T F F 

T T T 

 

4. Satisfiable: It must have at least one true. [ Contingency / tautology]  

5. Unsatisfiable  Contradiction  
 

  



Normal Form 
 
In mathematical logic, a normal form is a specific representation of a logical formula 
that follows a set of rules. The purpose of normal forms is to simplify the formula and 
make it easier to analyze. There are many types of normal forms in mathematical logic, 
but some of the most common ones include: 

 Prenex normal form: A formula in prenex normal form has all its quantifiers (i.e., “for all” 

and “there exists”) at the beginning of the formula. 
 Conjunctive normal form: A formula in conjunctive normal form is a conjunction (i.e., 

“and”) of one or more clauses, where each clause is a disjunction (i.e., “or”) of literals. 
 Disjunctive normal form: A formula in disjunctive normal form is a disjunction of one or 

more clauses, where each clause is a conjunction of literals. 

Together with the normal forms in propositional logic, such as disjunctive normal form or 
conjunctive normal form, prenex normal form provides a canonical normal form that is 
useful in automated theorem proving 12. 
Normal forms are also used in other areas of mathematics, such as linear algebra and 
circuit theory. 
 
Boolean Normal Forms 

There are three well established normal forms related to Boolean Expressions. We 
frequently need to communicate expressions between computer programs. Having a 

consistent set of normal forms makes this easier. 

The three normal forms we will look at are 

 Negative Normal Form (NNF) 
 Conjunctive Normal Form (CNF) 
 Disjunctive Normal Form (DNF) 

The rules for these normal forms use some new terminology. 

 Literal: a variable, constant, or negation of a variable. 
 Clause: literals or expressions connected by operators. 
 Disjunctive Clause: a clause created using a disjunction. 
 Conjunctive Clause: a clause created using a conjunction. 

It is important to differential between literals and clauses. A literal is something that 
can be trivially evaluated. A clause requires all its input operands evaluated, then it 

needs to be evaluated. 

We also talk about where in an operator appears. We use the 
words above and below in relation to operators. One operators is above another if it 
gets evaluated after. One operator is below another if it gets evaluated before. 

Here is an example expression with multiple operators. No operators are duplicated to 

avoid confusion. 

https://logic.boady.net/content/005_simple/002_normal.html
https://logic.boady.net/content/005_simple/002_normal.html
https://logic.boady.net/content/005_simple/002_normal.html
https://logic.boady.net/content/005_simple/002_normal.html
https://en.wikipedia.org/wiki/Prenex_normal_form
https://logic.boady.net/content/005_simple/002_normal.html
https://logic.boady.net/content/005_simple/002_normal.html


A⟹(B∨(¬C∧D)) 

This expression has four literals. They are A,B,¬C,D. Notice that ¬C is considered 
a literal. The negation is applied directly to the variable C. 

The conditional operator is above all other operators. It is the last thing that gets 
evaluated. The disjunction is above the conjunction operator but below the conditional. 
The conjunction is below both conditional and the disjunction, it is only above the 

negation. 

If we write the expression out in Racket notation, the above/below quality becomes 

even more obvious. 

(implies A (or B (and (not C) D))) 

 

The code need to be evaluated from the inside out. The outermost expressions 
are above the inner expressions. The terminology comes from thinking of the 

expression as a tree. 

 



 

Using this terminology, we can define the three common normal forms. 

  



Predicates and Quantifiers 

Predicates and quantifiers are fundamental concepts in mathematical logic. A predicate 
is a statement that describes a property or characteristic of a subject. For example, the 
statement “x is greater than 3” is a predicate, where “x” is the subject and “is greater 
than 3” is the predicate. A quantifier is used to express the extent to which a predicate is 
true over a range of elements. There are two types of quantifiers: universal and 
existential. 

Universal quantification is used to express that a property is true for all values of a 
variable in a particular domain. For example, the statement “For all x, x is greater than 
3” is an example of universal quantification. The universal quantification of P(x) for a 
particular domain D is the proposition that asserts that P(x) is true for all values of x in 
D. 

Existential quantification, on the other hand, asserts that there exists at least one 
element in the domain for which the property holds true. For example, the statement 
“There exists an x such that x is greater than 3” is an example of existential 
quantification. 
Predicate logic extends propositional logic by adding the concept of predicates and 
quantifiers to better capture the meaning of statements that cannot be adequately 
expressed by propositional logic. It allows us to reason about properties that hold for all 
or some elements in a domain. 
 

A propositional function, or a predicate, in a variable x is a sentence p(x) involving x that 
becomes a proposition when we give x a definite value from the set of values it can 
take. We usually denote such functions by p(x), q(x), etc. 

So, if p(x) is ‘x > 5’, then p(x) is not a proposition. But when we give x particular values, 
say x = 6 or x = 0, then we get propositions. Here, p(6) is a true proposition and p(0) is a 
false proposition. 

Note: that a predicate is usually not a proposition. But, of course, every proposition is a 
prepositional function in the same way that every real number is a real-valued function, 
namely, the constant function. 
Now, can all sentences be written in symbolic from by using only the logical 
connectives? What about sentences like ‘x is prime and x + 1 is prime for some x.’? 
How would you symbolize the phrase ‘for some x’, which we can rephrase as ‘there 
exists an x’? You must have come across this term often while studying mathematics. 

We use the symbol ‘∃’ to denote this quantifier, ‘there exists’. The way we use it is, for 

instance, to rewrite ‘There is at least one child in the class.’ as‘(∃ x in U)p(x)’, where p(x) 
is the sentence ‘x is in the class.’ and U is the set of all children. 

Now suppose we take the negative of the proposition we have just stated. Wouldn’t it be 
‘There is no child in the class.’? We could symbolize this as ‘for all x in U, q(x)’ where x 

https://www.geeksforgeeks.org/mathematic-logic-predicates-quantifiers/
https://www.geeksforgeeks.org/mathematic-logic-predicates-quantifiers/
https://www.geeksforgeeks.org/mathematic-logic-predicates-quantifiers/
https://www.geeksforgeeks.org/mathematic-logic-predicates-quantifiers/
https://www.geeksforgeeks.org/mathematic-logic-predicates-quantifiers/


ranges over all children and q(x) denotes the sentence ‘x is not in the class.’, i.e., q(x) ≡ 
~ p(x). 

We have a mathematical symbol for the quantifier ‘for all’, which is ‘∀’. So the 

proposition above can be written as ‘(∀ x ∈ U)q(x)’, or ‘q(x), ∀ x ∈ U’. 

An example of the use of the existential quantifier is the true statement. (∃ x ∈ R) (x + 1 
> 0), which is read as ‘There exists an x in R for which x + 1 > 0.’. 

Another example is the false statement(∃x ∈N)(x−1/2=0), which is read as ‘There exists 
an x in N for which x−12=0x−21=0’. 

 

Well-formed formula 

A statement formula is an expression which is a string consisting of variables, 
parentheses and connective symbol is called well-formed formula (wff). 

Rules of Well-formed formula 

A well-formed formula can be generated by the following rules. 
(i) A statement variable standing alone is wff. 
(ii) If A is a wff then ~A is a wff. 
(iii) If A and B are wff, then (A˄B), (A˅B), (A→B) and (A↔B) are wff. 
(iv) A string of symbols containing the statement variables, connectives and 
parentheses is a wff if and only if it can be obtained by finitely many 
applications of the rules (i), (ii) and (iii). 

Examples of some Well-formed formula 

(i) ∼(P∧Q) 

(ii) ∼(P∨Q) 
(iii) (P→(P∨Q)) 
(iv) (P→(Q→P)) 

(v) (((P→Q)∧(Q→R))↔(P→R)) 
Examples of some not Well-formed formula 

(i) ∼P∧Q 

(ii) (P→Q)→(∼Q) 
(iii)(P→Q 

(iv) (P→Q)→Q) 
 



Types of quantification or scopes: 

1. Universal(∀) – The predicate is true for all values of x in the domain. 
2. Existential(∃) – The predicate is true for at least one x in the domain. 

To know the scope of a quantifier in a formula, just make use of Parse trees. 

Two quantifiers are nested if one is within the scope of the other. 
 Example-1: 

∀x ∃y (x+y=5) 
Here ‘∃’ (read as-there exists) and ‘∀’ (read as-for all) are quantifiers 
for variables x and y. 
The statement can be represented as- 

∀x Q(x) 

Q(x) is ∃y P(x, y)  Q(x)-the predicate is a function of only x because 
the quantifier applies only to variable x. 
P(x, y) is (x + y = 5) 

Example to convert a statement into a nested quantifiers formula: 
“There is a pupil in this lecture who has taken at least one course in Discrete 
Maths.” 
A statement consists of quantifiers and predicates, split it into it's two 
constituents. 
Here x and y are the pupil and the course and their respective quantifiers are 
attached in front of them. 

Write it down as- 

For some x pupil, there exist a course in Discrete Maths such that x has taken 
y. 

∃x ∃y P (x, y), where P (x, y) is "x has taken y". 

 Theorem-1: The order of nested existential quantifiers can be 

changed without changing the meaning of the statement. 
 Theorem-2: The order of nested universal quantifiers can be changed 

without changing the meaning of the statement. 
 Example-3: 

Assume P(x, y) is xy=8, 

∃x ∃y P(x, y) domain: integers 
Translates to- 
There is an integer x for which there is an integer y such that xy = 8, 
which is same as- 
There is a pair of integers x, y for which xy = 8. 
Meaning ∃x ∃y P(x, y) is equivalent to ∃y ∃x P(x, y). 

Similarly, 

Assume P(x, y) is (xy = yx). 

∀x ∀y P(x, y) domain: real numbers 
Translates to- 



For all real numbers x, for all real numbers y, xy = yx or, 
For every pair of real numbers x, y, xy = yx. 

again ∀x ∀y P(x, y) is equivalent to ∀y ∀x P(x, y). 

However, when the nested quantifiers are not same, changing the 

order changes meaning of statement. 

Negation of nested quantifiers: 
 Theorem-3 

To negate a sequence of nested quantifiers, you change each 
quantifier in the sequence to the other type and then negate the 
predicate. 

So the negation of ∀x ∃y : P(x, y) is ∃x ∀y : ~P(x, y) 
 Example-5: 

“ ∃x at Cornell, x is at least 18 years old.” 
To disagree with this, you’re negating the statement by flipping the ∃ 

to ∀ and then 
negating the predicate: 

“ ∀x at Cornell such that x is not at least 18 years old.” 

  



Rules of Inference 

Important Definitions :  
1. Argument – A sequence of statements, premises, that end with a 

conclusion.  
2. Validity – A deductive argument is said to be valid if and only if it takes a 
form that makes it impossible for the premises to be true and the conclusion 
nevertheless to be false.  
3. Fallacy – An incorrect reasoning or mistake which leads to invalid 
arguments.  
Structure of an Argument : As defined, an argument is a sequence of 

statements called premises which end with a conclusion. 

 

 

Rules of Inference : Simple arguments can be used as building blocks to 

construct more complicated valid arguments. Certain simple arguments that 
have been established as valid are very important in terms of their usage. 
These arguments are called Rules of Inference. The most commonly used 
Rules of Inference are tabulated below – 
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